Datenblatt Psi-Werte Fenster

auf Basis messtechnischer Ermittlung der äquivalenten Wärmeleitfähigkeit der Abstandhalter

GÜTEZEICHEN MEHRSCHEIBEN **ISOLIERGLAS**

SWISSPACER

Dreischeiben-Isolierglas U_g=0,7 W/m²K

12

12

SWISSPACER

Vetrotech Saint-Gobain (International) AG Zweigniederlassung Kreuzlingen Sonnenwiesenstrasse 15 CH-8280 Kreuzlingen

	Produktname		Abstandhalter Bauhöhe in mm	Material	Dicke d in mm
ofil- reibung	Bull-lipod Swisspacer		6,5	Thermisch verbesserte	~ 0,02
Pr			Profilkategorie C	Aluminiumfolie / SAN-GF	1,0
	Repräsentative Glasaufbauten	Metall mit thermischer Trennung	Kunststoff	Holz	Holz/Metall
Repräsentative Rahmenprofile					
Repräsentativer Psi-Wert Zweischeibiges Wärmedämmglas W/mK	Zweischeiben-Isolierglas U _g =1,1 W/m²K	0,047	0,039	0,039	0,042

Box Modell Kennwerte		SZR	Cahaihan wisahan saum (C7D) in man	$\lambda_{eq,2B}$ in W/mK	
wo Box Ken	h ₂ 2	Scheibenzwischenraum (SZR) in mm	Box 1 · h ₁ = 3 mm	Box 2 · $h_2 = 6.5 \text{ mm}$	
_≥		2			
	h ₁ 🕇	1	Für alle SZR verwendbar	0,40	0,29

0,037

0,037

Repräsentativer Psi-Wert Dreischeibiges Wärmedämmglas W/ mK

Die äquivalente Wärmeleitfähigkeit wurde nach der ift-Richtlinie WA-17/1 "Wärmetechnisch verbesserte Abstandhalter - Ermittlung der äquivalenten Wärmeleitfähigkeit durch Messung" ermittelt. Die damit berechneten repräsentativen linearen Wärmedurchgangskoeffizienten (repräsentative Psi-Werte) gelten für typische Rahmenprofile und Verglasungen für die Ermittlung des Wärmedurchgangskoeffizienten Uw von Fenstern. Sie wurden unter den in der ift-Richtlinie WA-08/3 "Wärmetechnisch verbesserte Abstandhalter - Teil 1: Ermittlung des repräsentativen Psi-Wertes für Fensterrahmenprofile" festgelegten Rahmenbedingungen (Rahmenprofile, Verglasung, Glaseinstand, Rückenüberdeckung, Primär- und Sekundärdichtstoff) ermittelt. Diese Richtlinie regelt auch den Gültigkeitsbereich und die Anwendung der repräsentativen Psi-Werte. Zur Vermeidung von Rundungsfehlem wurden die Psi-Werte im Datenblatt auf 0,001 W/mK angegeben. Das Verfahren zur rechnerischen Bestimmung der Psi-Werte hat eine Genauigkeit von ± 0,003 W/mK. Unterschiede von weniger als 0,005 W/mK sind nicht signifikant. Weitere Informationen sind dem Merkblatt 004/2008 "Kompass Warme Kante" des Bundesverband Flachglas zu entnehmen.

0,042

0,040

Datenblatt Psi-Werte Fassadenprofile

Abstandhalter Rauhöhe in mm

auf Basis messtechnischer Ermittlung der äquivalenten Wärmeleitfähigkeit der Abstandhalter

ÜTEZEICHEN MEHRSCHEIBEN ISOLIERGLAS

Dicke d in mm

SWISSPACER

I Produktname

SWISSPACER

Vetrotech Saint-Gobain (International) AG Zweigniederlassung Kreuzlingen Sonnenwiesenstrasse 15 CH-8280 Kreuzlingen

Material

	Produktname	Abstandhalter Bauhöhe in mm	Material	Dicke d in mm	
Profil- beschreibung	ADVANCE SWISSPACER	6,5 Profilkategorie C	Thermisch verbesserte Aluminiumfolie / SAN-GF	~ 0,02 1,0	
	Repräsentative Glasaufbauten	Holz-Metall	Metall mit wärmetechnischer Trennung (d _i = 100 mm)	Metall mit wärmetechnischer Trennung (d _i = 200 mm)	
Repräsentative Fassadenprofile					
Repräsentativer Psi-Wert Zweischeibiges Wärmedämmglas W/mK	Zweischeiben-Isolierglas Ug=1,1 W/m²K	0,066	0,088	0,093	
Repräsentativer Psi-Wert Dreischeibiges Wärmedämmglas W/mK	Dreischeiben-Isolierglas Ug=0,7 W/m²K	0,061	0,075	0,078	
Two Box Modell Kennwerte	$ \begin{array}{c c} & & & \\ \hline $		$\lambda_{eq,2B}$ in W/mK		
		Scheibenzwischenraum (SZR) in mm	Box 1 · h ₁ = 6 mm	Box 2 · h ₂ = 6,5 mm	
		Für alle SZR	0,40	0,29	

Two Box Modell Kennwerte	.	SZR
Two B	h_2	2
	h ₁	1

0.1.11	$\lambda_{eq,2B}$ in W/mK		
Scheibenzwischenraum (SZR) in mm	Box 1 · $h_1 = 6 \text{ mm}$	Box 2 · $h_2 = 6.5 \text{ mm}$	
Für alle SZR verwendbar	0,40	0,29	

Die äquivalente Wärmeleitfähigkeit wurde nach der ift-Richtlinie WA-17/1 "Wärmetechnisch verbesserte Abstandhalter - Ermittlung der äquivalenten Wärmeleitfähigkeit durch Messung" ermittelt. Die damit berechneten repräsentativen linearen Wärmedurchgangskoeffizienten (repräsentative Psi-Werte) gelten für typische Fassadenprofile und Verglasungen für die Ermittlung des $W\"{a}rmedurchgangskoeffizienten\ U_{CW}\ von\ Vorhangfassaden.\ Sie\ wurden\ unter\ den\ in\ der\ ift-Richtlinie\ WA-22/1\ "W\"{a}rmetechnisch$ verbesserte Abstandhalter - Teil 3: Ermittlung des repräsentativen Psi-Wertes für Fassadenprofile" festgelegten Rahmenbedingungen (Rahmenprofile, Verglasung, Glaseinstand, Rückenüberdeckung, Primär- und Sekundärdichtstoff) ermittelt. Diese Richtlinie regelt auch den Gültigkeitsbereich und die Anwendung der repräsentativen Psi-Werte. Zur Vermeidung von Rundungsfehlern wurden die Psi-Werte im Datenblatt auf 0,001 W/mK angegeben. Das Verfahren zur rechnerischen Bestimmung der Psi-Werte hat eine Genauigkeit von ± 0,003 W/mK. Unterschiede von weniger als 0,005 W/mK sind nicht signifikant. Weitere Informationen sind dem Merkblatt 004/2008 "Kompass Warme Kante" des Bundesverband Flachglas zu entnehmen.

